Prediction of cumulative tolerated dose for peanut allergic children using epitope-specific IgE antibody profiling

Maria Suprun¹, Paul Kearney², Clive Hayward², Heather Butler², Robert Getts², Scott H. Sicherer¹, Paul J. Turner³, Dianne E. Campbell⁴, Hugh A. Sampson¹

¹ Icahn School of Medicine at Mount Sinai; ² AllerGenis LLC; ³ Imperial College London; ⁴ The University of Sydney

Introduction

- IgE-epitope profiling can accurately diagnose clinical peanut allergy ¹.
- Bead-Based Epitope Assay {BBEA} utilizes bead-coupled peptides to measure IgE and IgG4 antibody levels. It is a highly reliable and sensitive assay for milk and peanut allergies ².

Objective: To determine if sequential/linear epitope-specific IgE (ses-IgE) can provide probabilities of tolerating discrete doses of peanut protein in allergic subjects undergoing double-blind, placebo-controlled food challenges (DBPCFC) utilizing PRACTALL dosing.

Methods

Fig.1. Study samples and DBPCFC dosing (Disc - Discovery; Val - Validation)

- 64 ses-IgE antibodies were measured by BBEA in plasma of subjects undergoing DBPCFC from five studies (Fig.1).
- 75 subjects from BOPI and OPIA were used in the Discovery phase, where
 - a pair of ses-IgEs that predicts Cumulative Tolerated Dose (CTD) was determined by machine learning (regressions) and evaluated using Spearman correlation (Rho).
 - ses-IgE predictor was validated on subjects from five independent cohorts.
- Validation subjects were grouped based on predicted values and probabilities of reactions at each CTD were calculated.

Ses-IgEs are associated with CTD

• In the Discovery cohort, patients reacting at lower CTDs generally having a greater number of epitopes recognized by IgEs (Fig.2).

Fig.2. Patient-specific heatmap with all 64 ses-IgEs as rows

43 143

 Correlations between CTD and individual ses-IgEs varied from -0.14 to -0.55, with >95% being statistically significant.

Ses-IgEs predictive of CTD

• Using machine learning in the Discovery phase, a pair of ses-IgEs that best predicts CTD was identified (Tab.1).

CRD

Tab.1. Performance of top 3 models		
Ses-IgE #1	Ses-IgE #2	Rho p<0.05
Ara h 2_008	Ara h 3_100	0.61
Ara h 1_173	Ara h 3_100	0.59
Ara h 1_030	Ara h 3_100	0.58

- Significant correlation of a predicted score with actual CTD (Fig.3):
 - 0.61 in Discovery
 - 0.51 in Validation

predictor value Fig.3. Estimated CTD of a final model

Predictor-based reaction probabilities

- Since the sample size at each dose tends to be small, further grouping was done based on ses-IgE predictor levels.
- Validation subjects were separated into three groups of dose reactivity: "low", "moderate", and "high" (Fig.4).

Fig.4. Bar chart of probabilities of tolerance at each peanut dose by dose-reactivity groups in 237 Validation subjects

- On average, subjects in the "high" dose-reactivity group were 4 times more likely to tolerate a specific dose, compared to the "low" dose group.
 - Accurate predictions of thresholds are complex due to limited sample sizes at each dose and variations in study-specific DBPCFC protocols.
 - This is a first validated algorithm using peanut specific epitopes to predict probabilities of reaction to different amounts of peanut in allergic subjects and may provide a useful surrogate for peanut food challenges.

References

L. Suárez-Fariñas M et al (2020). Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy

2. Suprun M et al (2019). Novel Bead-Based epitope Assay is a sensitive and reliable tool for profiling epitope-specific antibody repertoire in food allergy. Scientific Reports